Search results for "Head-Down Tilt"
showing 7 items of 7 documents
Disentangling cardiovascular control mechanisms during head-down tilt via joint transfer entropy and self-entropy decompositions
2015
A full decomposition of the predictive entropy (PE) of the spontaneous variations of the heart period (HP) given systolic arterial pressure (SAP) and respiration (R) is proposed. The PE of HP is decomposed into the joint transfer entropy (JTE) from SAP and R to HP and self-entropy (SE) of HP. The SE is the sum of three terms quantifying the synergistic/redundant contributions of HP and SAP, when taken individually and jointly, to SE and one term conditioned on HP and SAP denoted as the conditional SE (CSE) of HP given SAP and R. The JTE from SAP and R to HP is the sum of two terms attributable to SAP or R plus an extra term describing the redundant/synergistic contribution to the JTE. All q…
Autonomic regulation of nasal vessels during changes in body position
1994
The effects of postural changes on nasal airflow and nasal capillary blood flow were investigated in 15 healthy volunteers. Measurements were performed following nasal application of saline solution (control), the alpha-1 receptor antagonist prazosin, the alpha-2 receptor antagonist yohimbine, and after application of both prazosin and yohimbine. Nasal airflow in the control experiments did not significantly differ in the upright (362 +/- 166 ml/s), dorsally recumbent (350 +/- 167 ml/s) and 70 degrees head down position (311 +/- 167 ml/s). Following application of prazosin, nasal airflow was reduced to 223 +/- 121 ml/s in the upright position. Prazosin treatment significantly reduced nasal …
Quantifying Net Synergy/Redundancy of Spontaneous Variability Regulation via Predictability and Transfer Entropy Decomposition Frameworks.
2017
Objective: Indexes assessing the balance between redundancy and synergy were hypothesized to be helpful in characterizing cardiovascular control from spontaneous beat-to-beat variations of heart period (HP), systolic arterial pressure (SAP), and respiration (R). Methods: Net redundancy/synergy indexes were derived according to predictability and transfer entropy decomposition strategies via a multivariate linear regression approach. Indexes were tested in two protocols inducing modifications of the cardiovascular regulation via baroreflex loading/unloading (i.e., head-down tilt at −25° and graded head-up tilt at 15°, 30°, 45°, 60°, 75°, and 90°, respectively). The net redundancy/synergy of …
Investigating cardiac and respiratory determinants of heart rate variability in an information-theoretic framework.
2014
This study was aimed at comparing two alternative information-theoretic approaches for the combined analysis of heart rate variability (HRV) and respiration variability (RV). The approaches decompose the predictive information about HRV in two terms, quantifying respectively the information stored into HRV and that transferred to HRV from RV. Storage and transfer were assessed by the popular self entropy (SE) and transfer entropy (TE) measures, as well as by the alternative conditional SE (cSE) and cross entropy (CE) measures. The comparison was performed at a theoretical level, computing the exact values of the four measures for simulated cardiorespiratory dynamics, and on real data, estim…
Stress and recovery assessment during simulated microgravity: Effects of exercise during a long-term head down tilt bed rest in women.
2009
International audience; The aim of this study was to determine the effects of a 60-day head-down tilt long-term bed rest (HDT) on stress and recovery in sixteen healthy female volunteers. Participants were randomly assigned to either an exercise group (Exe) that followed a training program combining resistive and aerobic exercises, or to a no-exercise control group (Ctl). Psychological states were assessed using the Rest-Q, a validated questionnaire based on stress-recovery responses. A longitudinal analysis revealed significant changes in the general and specific-stress scales for all participants throughout the experiment with a critical stage from supine to standing posture leading to a …
Time course of cerebrovascular autoregulation during extreme Trendelenburg position for robotic-assisted prostatic surgery
2013
Trendelenburg positioning in combination with pneumoperitoneum during robotic-assisted prostatic surgery possibly impairs cerebrovascular autoregulation. If cerebrovascular autoregulation is disturbed, arterial hypertension might induce cerebral hyperaemia and brain oedema, while low arterial blood pressure can induce cerebral ischaemia. The time course of cerebrovascular autoregulation was investigated during use of the Trendelenburg position and a pneumoperitoneum for robotic-assisted prostatic surgery using transcranial Doppler ultrasound. Cerebral blood flow velocity was correlated with arterial blood pressure and the autoregulation index (Mx) was calculated. In 23 male patients, Mx was…
Robotic assisted prostatic surgery in the Trendelenburg position does not impair cerebral oxygenation measured using two different monitors: A clinic…
2014
Robotic assisted prostatic surgery is frequently used because of its reduced side-effects compared with conventional surgery. During surgery, an extreme Trendelenburg position and CO2 pneumoperitoneum are necessary, which may lead to cerebral oedema, can potentially reduce brain perfusion and therefore could impair cerebral oxygenation. Cerebral oxygen saturation can be measured non-invasively using near-infrared spectroscopy (NIRS).The hypothesis of the present study was that steep Trendelenburg positioning during robotic assisted prostatic surgery impairs cerebral oxygen saturation measured using two different NIRS monitors.Clinical observational study.Primary care university hospital, st…